

Overview of the Energy and Power Evaluation Program (ENPEP)

GUENTER CONZELMANN

Center for Energy, Environmental, and Economic Systems Analysis (CEEESA) Argonne National Laboratory (ANL) 9700 South Cass Avenue Argonne, Illinois 60439, USA

phone: 630-252-7173 fax: 630-252-6073

email: guenter@anl.gov

The Energy and Power Evaluation Program (ENPEP) Consists of 10 Integrated Analysis Tools

BALANCE is Designed to Analyze the Entire **Energy System in an Integrated Framework**

 Reveal cross-sectoral effects; provide structure for consistent energy "planning" program

Integrated framework allows evaluation of feedback

effects

BALANCE Determines the Equilibrium Supply/Demand Balance of the Energy System

INPUT

- Energy system structure
- Base year energy flows and prices
- Energy demand growth projections
- Technical and policy constraints

BALANCE Uses an Energy Network to Simulate Energy Markets

Using Nodes and Links, Each Sector is Modeled Differently Depending on Data Availability and Type of Issue Analyzed

The Following Node Types are Available to Model **Different Energy Activities**

Demand

Conversion Processes

Resource Processes

Economic Processes

 Electricity Dispatch and Thermal and Hydro Units

Hydro Unit

Nodes Are a Series of Simple Sub-Models, Each With a Set of Quantity and Price Equations

- Quantity_{output} = $f(Quantity_{input})$
 - Example conversion process

$$Q_{out} = Q_{in} \times \gamma$$

γ: conversion efficiency

- Price output = f (Price input)
 - Example conversion process

$$Q_{out} \times P_{out} = Q_{in} \times P_{in} + O&M + Capital Recovery$$

The Links Connect the Nodes and Pass Information from One Node to Another

At the Decision Nodes, Fuels and Technologies Compete for Future Market Shares

The Electricity Dispatch Node Handles the Electric Sector in a Special Way

BALANCE Uses a Logit-Function to Estimate Market Shares of Competing Commodities at the Decision Node

γ price sensitivity for this decision process

MS: market share

P: price

PM: premium multiplier

Q: quantity

The BALANCE Nonlinear Equilibrium Algorithm is Based on Decentralized Decision Making

- Market share calculation assumes "ideal market" subject to government policies, fuel availability, and market constraints
- A lag factor accounts for delays in capital stock turnover
- The result is a nonlinear, market-based equilibrium solution within policy constraints, not a simple, linear optimization
- No single person or organization controls all energy prices and decisions on energy use
- All decision makers optimize their energy choices based on their own needs and desires

BALANCE Uses an Up/Down Pass Sequence and the Jacobi Iterative Technique to Determine the Market Clearing Prices and Quantities (Market Equilibrium)

The Up-Pass and Down-Pass Sequences Are Repeated Until Convergence Has Been Achieved

CONVERGENCE IS ACHIEVED WHEN:

- Q1 (down) = Q1 (up) +/- Tolerance Level
- Q2 (down) = Q2 (up) +/- Tolerance Level
- The final result is a converged solution
- The solution is in equilibrium across the whole network

Each Case Study Can be Stored in a Different Database

The First Step in Developing an ENPEP Network is to Define the Sectors Included in Your System

Each Sector is Modeled Differently Depending on Data Availability and Type of Issue Analyzed

Inter-Sectoral Links Can Connect Energy Networks of Different Sectors

All Network Elements Can Be Accessed Using the Standardized Simple Menu

All Input Parameters Can be Changed Over Time

- Annual changes are optional
- Input data remains constant until the year you enter a new value
- Please note: Price projections for resources and demand growth rates for demand nodes are different (they are not special events)

Results Can be Viewed Interactively for Individual Network Components

BALANCE Uses a Standard Methodology to Determine the Uncontrolled and Controlled Source Emissions

Uncontrolled Emissions

Fuel Consumption

Emission Factor

x Chemical Scale

Controlled Emissions

= Uncontrolled Emissions

X

(100 - Control Efficiency) / 100

Emissions Are Calculated and Reported by Node for any Pollutant the User Specifies

Environmental Results Can be Viewed Directly in the Network, in Tables, Simple Graphs, or Exported to EXCEL

The New SIMPACTS Model Extends ENPEP's Emissions Calculations and Allows a Quick Analysis of Environmental Externalities

A Help System is Available to Provide Online Support

Note: The help system is still under construction. Content will change and not all topics may be available at this time.

ENPEP is Used by Energy and Environmental Experts Worldwide to Analyze a Variety of Critical Issues

Electric system analysis

- expansion analysis, demand side management
- optimal hydro/thermal dispatch (\$, environment)
- deregulation, independent power producers, power market studies, interconnection studies, etc.

Total energy system

- overall energy sector development strategies
- natural gas market analysis
- energy conservation+efficiency

Environmental analysis

- emissions projections for PM, SO₂, NO_X, etc.
- emissions reduction strategies for PM, SO₂ and NO_X
- emissions trading for SO₂ and CO₂ (cap and trade)
- GHG mitigation studies and Kyoto Mechanisms
- waste generation, land use, water pollution

Current/Recent ENPEP Applications in South America

Current/Recent ENPEP Applications in Eastern Europe

Poland

(MAED, WASP, BALANCE, IMPACTS)

Deregulated power market analysis
National energy analysis
Air pollution analysis
GHG mitigation analysis
PM and SOX control cost analysis

Romania

(WASP, BALANCE, IMPACTS)

National energy analysis
Energy sector restructuring
Natural gas imports
Rehabilitation, IPPs
Removal of energy subsidies
Air & water pollution analysis
GHG mitigation analysis
FCCC NatCom (submitted)
Waste generation

Croatia+Balkans

(MAED, WASP, BALANCE, IMPACTS)

National energy plan Electric system expansion Air pollution analysis IPP+Interconnection study

<u>Lithuania</u>

(WASP, MAED)

Electric system analysis

Belarus

(WASP, BALANCE, IMPACTS)

Electric system expansion National energy analysis Air pollution analysis

Slovakia

(BALANCE, IMPACTS)

National energy analysis GHG mitigation analysis FCCC Nat Com (submitted) Joint implementation

Hungary

(WASP, BALANCE, IMPACTS)

Electric sector expansion National energy analysis GHG mitigation analysis IPP Bid Evaluation

Bulgaria

(WASP, BALANCE, IMPACTS)

National energy plan Electric system development GHG mitigation analysis FCCC Nat Com submitted

Turkey

(WASP, ICARUS, BALANCE, IMPACTS, etc.)

National energy plan

Electric sector dispatch and expansion Privatization, Environmental assessments

Current/Recent ENPEP Applications in Asia

ANL and Local Experts Used ENPEP to Analyze Natural Gas and Electricity Issues in Uruguay

- Overall energy sector development strategy in light of increasing regional integration
- Uruguay's energy supply system is undergoing change (MERCOSUR, natural gas imports, potential increase in electricity connections with other countries, energy sector reform, etc.)

- For a total of six scenarios, analyze fuel substitution trends due to gas imports and increased electricity interties, and project future market penetration of natural gas by sector
- DIS collaborated with a team of local energy experts from the Presidential Planning Office (OPP), Ministry of Energy (MoE), National Energy Office (DNE), Electric Utility (UTE), Oil Refinery (ANCAP), and Gas Company
- Project sponsored by The World Bank

Uruguay's Projected Natural Gas Imports Are Highest in an Open Regional Electricity Market

ANL Used ENPEP to Assist the Hungarian Power Companies in Evaluating IPP Bids

- The Hungarian Power Companies (MVMRt) were recently restructured from a state-owned vertically integrated utility into a transmission company; generation is owned by private (domestic and foreign) companies; 6 regional private distribution companies
- MVMRt determined additional power generation capacity is needed; MVMRt issued a tender in 1997 and received 80 initial responses

- MVMRt contracted Argonne to develop a methodology for evaluating the IPP bids and to audit the evaluation process
- MVMRt signed two long-term PPA contracts with operators of gas-fired combined cycle combustion turbines worth \$1.3 billion
- Announcement can be found at http://www.mvm.hu/angol/angkapac.html

Technical Experts from Poland Used ENPEP to Analyze the Requirements of the Kyoto Protocol

Poland's Power Sector Remains Largest Source of CO₂ Emissions under the Baseline Scenario

- Total CO₂ emissions are projected to increase from 363 million metric tons (1996) to 433 million metric tons (2020); the growth in emissions comes from the electric sector and the transportation sector
- Share of power sector remains fairly constant and is still 45% by 2020
- Transport sector emissions grow quickly with its share increasing from 8% (1996) to 14% (2020)
- The shares of the other sectors are all projected to decrease

Meeting Kyoto Requirements Will Depend on the Choice of Base Year for Poland

- As an Economy-in-Transition, Poland has the flexibility to choose the base year for its CO₂ reduction commitments (1988 rather than 1990)
- If Poland had to reduce its CO₂ emissions to 6% below 1990 levels, only one scenario would be consistently below the limits
- All scenarios are projected to meet the limit of 449 million tons (1988 minus 6%)
- CO₂ reduction by 2020 of up to 109 million tons, (or 25% below the baseline scenario
- Nuclear may cut CO₂ emissions by up to 50 million tons

Technical Experts in Vietnam Used ENPEP to Project Emissions from Power Generation

 MAED was used to obtain the load forecast; generates seasonal load duration curves required by ELECTRIC (WASP)

 ELECTRIC (WASP) was used to develop the long-term electric power system expansion under several scenarios

 IMPACTS was used to calculate the emissions of a variety of pollutants (GHG and non-GHG) and to estimate the mitigation cost for reduction of particulate matter and sulfur dioxide

 Team composed of experts from Vietnam Atomic Energy Commission – Institute of Nuclear Science and Technique

Project supported by IAEA and US State Department

Vietnam's Economy is Projected to Continue its Rapid Growth Requiring Substantial Power System Expansion

Vietnam's CO₂ Emissions from Power Generation are Projected to Grow Significantly

Emissions by Region in Vietnam

 Most of the current and new coal units are located in the northern region where Vietnam's coal resources can be found

- 83% of SO₂ emissions are in the north
- After 2007, many existing and inefficient coal units retire
- Vietnam's oil and gas resources are mostly in the south where most of the new gas-fired units are expected to be constructed
- By 2020, about 62% of CO₂ and 70% of NO_X emissions are generated by gas-fired units in the south

Complying with Vietnamese Air Pollution Rules Reduces 2020 SO₂ Emissions by 50,000 Tons Annually (70%)

Vietnam's Emission Abatement Costs for PM and SO₂ are Significant

